
Kinematic Path Planning Under Uncertainty

Capprin Bass∗, Neha Pusalkar†, and Brett Stoddard‡
Collaborative Institute for Robotics and Intelligent Systems (CoRIS), Oregon State University

Corvallis, Oregon
Email: {∗basscap, †pusalkan, ‡stoddabr}@oregonstate.edu

Abstract— Recently in the robotics industry, companies con-
struct certain research robots from cheaper components, lower-
ing the barrier of entry to study robot systems. These systems
pose a challenge from a planning and control standpoint, as
uncertainty in actuation and sensing propagates into the tra-
jectory of the robot. In this paper, we present a novel method of
expressing joint space uncertainty in the task space, respecting
system kinematics. We cast this expression for uncertainty
as a pathlength metric, reflecting uncertainty accrued over
a trajectory. Finally, we use our covariant pathlength metric
as a heuristic for path planning (Covariant A*), producing
paths for a planar manipulator that minimize uncertainty. The
resultant algorithm enables finding the path that optimizes for
the minimizing end effector uncertainty at the final position.

I. INTRODUCTION

Modern industrial robots are built to be controlled using
kinematic and dynamic principles. Many systems take advan-
tage of powerful actuators, precise sensors, and fast comput-
ers to make software control tenable, using these mechanical
models. Task space path plans can be followed with PID
control on top of inverse kinematics or dynamics; the result
is a robust stack of methods that has seen widespread use
in industry [1]. However, this approach literally comes at a
cost: industrial robots range in price from tens to hundreds
of thousands of dollars.

A recent trend in robotics is the construction of lower cost
systems, often with the goal of a lower barrier to entry in
robotics research. Some current examples of robots built with
this goal include Hello Robot’s Stretch [2], Pollen Robotics’
Reachy [3] and others, as well as inexpensive hobby and
education-oriented robots [4]. These systems often may be
characterized as the antithesis of current industrial robots:
inexpensive actuators, sensors, and computers are chosen
on purpose to keep cost low. The relative imprecision of
constituent components makes control of these systems a
challenge. Uncertainty must be built into models for system
behavior, and ought to be accounted for when designing
motion plans.

In this paper, we address the need for uncertainty-aware
path planning with a novel approach, taking advantage of
first-order system kinematics to represent uncertainty at the
end effector. Unlike many previous approaches [5], where
uncertainty is incorporated into control systems, we leverage
kinematic uncertainty at the path planner level.

Foundational work in robotics established mapping un-
certainty in the configuration or joint space to workspace
[6]. Singularity, and collision avoidance can be done by

mapping constraints between joint and work spaces. Our
approach takes a similar method of mapping between joint
space uncertainty and the task space to provide an intuitive
representation of uncertainty at any configuration using the
Jacobian.

We use the covariance between actuators to represent
uncertainty in the joint space and map it up to the task space
using an inverse pullback operation:

M =
(
J†)T Σ J†, (1)

where M is the uncertainty expressed in the task space,
J is the jacobian of the manipulator, and Σ is the joint-
space defined covariance. The task space uncertainty M
may be used as a length metric for paths defined in the
task space; it reflects the uncertainty accrued by taking a
given path. We demonstrate our covariant pathlength metric
as a heuristic for path planning, producing paths that respect
system uncertainty.

The remainder of this paper is organized as follows. In §II,
we review the relevant background in kinematics, geometry,
and path planning. In §III, we describe how the covariance
matrix is mapped into the task space, and how uncertainty is
accounted for in path planning. In §IV, we demonstrate our
method on a planar manipulator, generating low-uncertainty
paths. In §V, we make final remarks and comment on future
work.

II. BACKGROUND

A. Model and Kinematic Map

When studying robot systems, we usually distinguish
between the joint space and the task space. The joint space
Θ refers to the set of actuator configurations, and the task
space G refers to the set of end effector or baseframe config-
urations. In this paper, we focus on revolute manipulators in
the plane; this implies that Θ = SN , where N is the number
of joints, and G = SE(2).

The robotics community uses a number of methods to
move between the joint space and the task space. These are
often referred to as forward kinematics, inverse kinematics,
and their dynamic counterparts. The most important mapping
in the context of this paper is the Jacobian, which maps
between tangent spaces. In our case, for θ ∈ Θ, this is:

J(θ) : TΘ → TG. (2)

The Jacobian may be interpreted as a first order kinematic
map; it linearly maps velocity in the joint space at a given



configuration to velocity in task space. For g ∈ G and θ ∈ Θ,
this is:

ġ = J(θ)θ̇. (3)

B. Bilinear Forms
Here, the Jacobian is used to map velocity-dependent

quantities (represented as bilinear forms) from the joint space
to the task space. Bilinear forms are usually defined as
symmetric or skew-symmetric matrices Ω:

Ω =


Ω11 Ω12 Ω13 · · ·
±Ω12 Ω22 Ω23 · · ·
±Ω13 ±Ω23 Ω33 · · ·

...
...

...
. . .

 , (4)

and operate on velocities θ̇1, θ̇2 using matrix multiplication:

Ω(θ̇1, θ̇2) = (θ̇1)
TΩ θ̇2. (5)

The key benefit to this representation is that the Jacobian
may be used to relate forms defined on the joint space to
quantities in the task space. From (3), we relate task space
velocities to joint space velocities:

θ̇ = J†ġ, (6)

where J† refers to the pseudoinverse of the Jacobian, and
respects the fact that J is not always invertible. Now, (6) is
applied to (5) to pullback workspace velocities by the inverse
of the kinematic map:

Ω(ġ1, ġ2) =

(θ̇1)
T θ̇2︷ ︸︸ ︷ ︷ ︸︸ ︷

(ġ1)
T (J†)T ΩΘJ† ġ2︸ ︷︷ ︸

ΩG

. (7)

Bilinear forms have a broad set of applications; in this paper,
we use them in two specific ways. The first is to define
covariance over the joint space, as a first order estimate for
uncertainty. The second is to define a Riemannian metric,
which measures distance over a space, and is essential for
alternate definitions of pathlength for planning.

C. Covariance Matrix
In probability and statistics, variance σ measures the

expected (or average) deviation from the mean in a random
variable. As an extension, covariance Σ between two (or
more) random variables measures how each effects the other,
i.e. how correlated the two distributions are. As an example,
for random variables X and Y , the covariance Σ may be
written as a matrix,

Σ =

[
σXX σXY

σY X σY Y

]
, (8)

where the diagonal σii terms refer to the variance of each
distribution, and the off-diagonal σij terms refer to the
contribution of the other distribution towards variance.

Due to the shared properties1 between covariance and
general bilinear forms, we may interpret covarariance as a bi-
linear form. When we do so, vectors are linear combinations

1Specifically, the important shared properties between covariance and
bilinear forms are biliniarity, symmetry, and positive semi-definiteness.

of random variables, and matrix multiplication yields the
variance of said linear combination. For a linear combination
vector c, the variance σ(c) is

σ(c) = cTΣ c. (9)

We now describe Riemannian metrics, a related applica-
tion of bilinear forms, generally defining distance.

D. Riemannian Metrics
Formally, a Riemannian metric defines an inner product

on the tangent space (here, TΘ or TG). The inner product
can be thought of as a generalization of the dot product: it
measures (by some choice of measurement) the similarity of
two vectors. A useful consequence of the inner product is
that a vector may be measured against itself to provide a
measure of length.

On a broader scale, lengths are measured by integrating the
metric (represented as a bilinear form) over a path definition.
For a metric M , path parametrization ϕ(t), and location x(t),
the weighted length Lϕ is

Lϕ =

ˆ
ϕ

(
(ẋ)TM(x) ẋ

) 1
2 dϕ. (10)

In the discrete case, weighted length of a path with n
segments is given by

Lϕ =

n−1∑
i

(
∆xT

i,i+1M(xi)∆xi,i+1

) 1
2 , (11)

as we weight the length of each segment ∆xi,i+1 by the
metric M .

In this paper, a Riemannian metric is used to define a
custom measure of distance. Metric distance applied to a path
planning algorithm can produce optimal paths with respect
to our own choice of distance.

E. Path Planning
Path planning is a rich area of study, most of which is out-

side the scope of this paper. However, most planners can take
advantage of a number of distance measures as heuristics
to compare candidate paths with some formulations being
situationally more effective than others [7]; classic examples
include p-norms such as Euclidean or Manhattan distance.
Here, we use a simple path planner, A* search, to find
shortest paths under metric distance.

A* search is a heuristic based path planning algorithm.
Each node in the A* graph stores the cost of the cheapest
path from start to the current node (gScore) and an estimate
of the cost to reach the goal node from current node (hScore).
The node also stores the best guess (fScore) of the path
cost, if the final path were to use the current node, which
is the sum of gScore and hScore. A list of frontier nodes
and explored nodes is maintained to decide which nodes
to choose for further expansion. The node with the lowest
fScore is expanded by selecting the neighbouring nodes using
8-connectivity. If the neighbour node was already in the
frontier nodes list, its gScore and fScore is updated, else
this neighbouring node is added to the frontier nodes list.
This process continues until the goal node is reached.



Fig. 1: Joint space multiviariate normal distribution, pulled
back through first order system kinematics. Resulting work
space samples lie in an ellipse, centered about the end
effector.

III. COVARIANCE AS A PATHLENGTH METRIC

Here, we draw on the methods introduced in §II to repre-
sent uncertainty respecting system kinematics. We briefly ex-
press our method using the relevant mathematics, and explain
algorithmic implementation. We integrate our approach with
path planning, generating uncertainty-aware motion plans.

A. Kinematic Mapping of the Covariance Matrix

The key innovation of this work is casting covariance as
a pathlength metric. We define uncertainty in the joints of a
system using a covariance matrix defined on the joint space.
The variance σ generated by a set of joint motions θ̇ is given
by the covariance matrix Σ as

σ(θ̇) = (θ̇)TΣ θ̇. (12)

By interpreting covariance Σ as a bilinear form, we can
represent it on the task space. We map Σ from the joint
tangent space TΘ to the task tangent space TG using an
inverse pullback:

σ(ġ) =

(θ̇)T θ̇︷ ︸︸ ︷ ︷︸︸︷
(ġ)T (J†)T Σ J† ġ︸ ︷︷ ︸

M

−→M(θ) = (J†)TΣ J†, (13)

which can be written simply as

σ(ġ) = (ġ)TM ġ. (14)

The task space covariance M(θ) can be interpreted in a
similar way to a manipulability ellipsoid. For any config-
uration θ, covariance M(θ) can be drawn as an ellipse at
the end effector of the manipulator, where the major axis
encodes the direction generating the most variance. Fig. 1
demonstrates this empirically, for joint samples drawn from
the multivariate normal distribution, pulled back through the
system kinematics.

Algorithm 1: Computation of Metric Pathlengths
Input: Arm geometry geom, Path path, Variance Σ
Output: Pathlength len
len← 0
for lastPoint, point, nextPoint in path do

//use Newton-Rhapson for arm shape
shape← inverseKinematics(lastPoint, point)
J ← bodyJacobian(geom, shape)
//compute metric
M ← (J†)TΣJ†

//measure segment vector
g = (nextPoint− point)

len← len+
(
(g)TM g

) 1
2

end
return len

We now interpret covariance as a Riemannian metric
on the task space. As in (10), the aggregate variance (or,
uncertainty) σϕ generated by a path ϕ(t) in the task space
can now be written as

σϕ =

ˆ
ϕ

(
(ġ)TM(θ(t)) ġ

) 1
2 dϕ. (15)

We use this measure for length to perform path planning
in the task space, selecting paths that minimize accrued
uncertainty.

B. Planning Under Uncertainty

For planning to take advantage of the covariant metric, we
require the configuration of the manipulator at each point
along the path. We then compute lengths using (15), used
both to compute path and heuristic lengths. This process is
described here, as well as in Algorithm 1.

We define a path that starts at the initial position of the
end effector of a manipulator. For each subsequent point on
the path, we perform Newton-Rhapson inverse kinematics to
find valid configurations generating the path (a classic inverse
kinematics problem). Given the configuration of the arm, we
compute the body Jacobian of the end effector at each point.

With the Jacobian of the manipulator, we can compute
the task space covariance at each point using (13). This is
then used to find weighted lengths of each segment along
the path. The total covariance-weighted length of the path is
then a sum of each weighted segment, as in (11).

Weighted path lengths are used in planning as an alter-
native to Euclidean (or other) distance measures. Here, as
a simplified example, we use covariant metric length with
A* search to generate approximately minimum-uncertainty
paths. We now demonstrate this approach, and compare
the paths generated for Euclidean and covariant distance
measures.

IV. RESULTS AND ANALYSIS

We demonstrated the use of path planning using our
uncertainty metric using different arms in SE(2). Paths for
the arms in SE(2) were calculated for both a standard A* path



(a) Initial and final arm positions

(b) EE Path for Covar. A* (c) Trajectory for Covar. A*

(d) EE Path for Euclid. A* (e) Trajectory for Euclid. A*

Fig. 2: Resultant paths for an arm 1 which has links of
the identical sizes. Middle row: results using the covariance
path planner. Bottom row: results using the euclidean path
planner.

planner (i.e., minimizing the path length in task space), and
our A* with the covariant metric as a cost (i.e., minimizing
the end effector uncertainty along the path). The results of
our path planner2, Covariant A*, compared to traditional
Euclidean A* are shown in Figures 2 and 3.

To enable the A* path planning algorithm, the task space
of the end effector was discritized into an 8-connected grid
world. Each node in this grid world consisted of an x, y,
and θ coordinates. Adjacent nodes in this grid world included
nine x, y positions by three angles θs (+90deg, 0deg, -90deg)
which results in each node in the grid world graph having up
to 27 neighbors. Only nodes which had a valid IK solution
were explored. This essentially captures holonomic motion
of the end effector in the task space.

Paths for two different robot arms are presented. These two
arms are over-actuated, consisting of four links each, as our
hueristic is incalculable when a node is explored outside of
the robot arm’s workspace. Resultant paths for our Covariant
A* algorithm are shown appear to result in a smoother path
with fewer angle changes vs Euclidean distance.

V. CONCLUSION

We present a path planning formulation based on minimiz-
ing the final uncertainty of an end effector in task space. This
is based on a novel formulation of a Riemannian metric from
joint covariance and the Jacobian. We apply this metric as a
heuristic for an A* path planner to generate valid trajectories

2Code available at https://github.com/NehaPusalkar/
Rob545_project

(a) Initial and final arm positions

(b) EE Path for Covar. A* (c) Trajectory for Covar. A*

(d) EE Path for Euclid. A* (e) Trajectory for Euclid. A*

Fig. 3: Resultant paths for an arm 2 which has links of
the varying sizes. Middle row: results using the covariance
path planner. Bottom row: results using the euclidean path
planner.

that minimizes propagated uncertainty. We show results of
using this path planner on two robot arms in SE(2) compared
to a traditional path planner (A* with Euclidean distance
heuristic)

Future work can expand our implementation to SE(3)
and improve performance by using other path planning
algorithms. For example, incorporating our heuristic within
Lazy Receding-Horizon A* [8] may greatly improve the time
to find an optimal path as calculating the full covariance cost
for a node is computationally expensive. Additionally, Monte
Carlo simulations showing propagating uncertainty in joint
space across a path in task space could be used to better
quantify the benefit of our approach.

Optimizing path plans based on kinematic uncertainty, as
we have done here, will enable more relaxed control systems
and therefore more inexpensive robots.

VI. MEMBER CONTRIBUTIONS

Capprin: Problem formulation and calculation of the uncer-
tainty heuristic.
Neha: Implementation of A* path planning with traditional
Euclidean distance heuristic and the covariant metric heuris-
tic.
Brett: Synthesis of results and visualizations.

REFERENCES

[1] R. P. Borase, D. Maghade, S. Sondkar, and S. Pawar, “A review of
pid control, tuning methods and applications,” International Journal of
Dynamics and Control, vol. 9, no. 2, pp. 818–827, 2021.

https://github.com/NehaPusalkar/Rob545_project
https://github.com/NehaPusalkar/Rob545_project


[2] C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich, “The design
of stretch: A compact, lightweight mobile manipulator for indoor human
environments,” arXiv preprint arXiv:2109.10892, 2021.

[3] S. Mick, M. Lapeyre, P. Rouanet, C. Halgand, J. Benois-Pineau,
F. Paclet, D. Cattaert, P.-Y. Oudeyer, and A. De Rugy, “Reachy, a 3d-
printed human-like robotic arm as a testbed for human-robot control
strategies,” Frontiers in neurorobotics, p. 65, 2019.

[4] Z. Lu, A. Chauhan, F. Silva, and L. S. Lopes, “A brief survey of
commercial robotic arms for research on manipulation,” in 2012 IEEE
Symposium on Robotics and Applications (ISRA). IEEE, 2012, pp.
986–991.

[5] B. Xiao, L. Cao, S. Xu, and L. Liu, “Robust tracking control of
robot manipulators with actuator faults and joint velocity measurement
uncertainty,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3,
pp. 1354–1365, 2020.

[6] V. Lumelsky and K. Sun, “A unified methodology for motion planning
with uncertainty for 2d and 3d two-link robot arm manipulators,” The
International journal of robotics research, vol. 9, no. 5, pp. 89–104,
1990.

[7] X. Liu and D. Gong, “A comparative study of a-star algorithms for
search and rescue in perfect maze,” in 2011 international conference
on electric information and control engineering. IEEE, 2011, pp. 24–
27.

[8] A. Mandalika, O. Salzman, and S. Srinivasa, “Lazy receding horizon a*
for efficient path planning in graphs with expensive-to-evaluate edges,”
in Proceedings of the International Conference on Automated Planning
and Scheduling, vol. 28, 2018, pp. 476–484.


	Introduction
	Background
	Model and Kinematic Map
	Bilinear Forms
	Covariance Matrix
	Riemannian Metrics
	Path Planning

	Covariance as a Pathlength Metric
	Kinematic Mapping of the Covariance Matrix
	Planning Under Uncertainty

	Results and Analysis
	Conclusion
	Member Contributions
	References

