
Spectral Analysis and Compression of Audio

Justin Nichols, Capprin Bass, Victoria Marbois

Mathematical and Computational Modeling—MATH 484

Dr. Mike Nicholas

Due: May 6th, 2020

Contents

1 Introduction 1

2 Fourier Transformation 1
2.1 Background . 1
2.2 Short Time Fourier Transform . 2
2.3 Spectrogram . 2

3 Mel Scaling 3

4 Compression 4

5 Analysis of Results 5

Appendix 6

List of Figures 6

A Code 6

B Sources 7

1 Introduction

The field of spectral analysis is of particular interest when working with audio. The concept is centered around
analyzing the frequency components of a signal, generally from superposition of sinusoidal functions. Our goal was
to use spectral analysis to break down an audio input (a song) and remove a select subset of the frequencies to return
a compressed file.

2 Fourier Transformation

2.1 Background

Fourier Transforms translate continuous time-domain signals into the frequency domain. In other words, they
translate a signal into its spectra, and as a result, they are the primary tool used in spectral analysis. The continuous
Fourier transform is given by

F(ξ) =

∫ ∞
−∞

f(x)e−2πxξdx (1)

The Fourier transform is a logical step from the Fourier series, a superposition of periodic (sine, cosine) functions. It
is useful when performing analysis on continuous functions, but not discrete data. Because audio files are collections
of sampled amplitudes, a discrete version of the Fourier transform is used: the Discrete Fourier Transform (DFT).

Xk =

N−1∑
n=0

xne
− 2πi

N kn (2)

Given a complex vector of amplitudes x in the time domain, the DFT produces another complex vector of amplitudes
X in the frequency domain. For the DFT, instead of each index n representing a discrete time, each index k represents
a discrete frequency. In this way, the DFT returns the frequency components of a signal and their respective
amplitudes. The differences between time-space and frequency-space representations are shown in Figures 1 and 2.

Figure 1: Amplitude vs. Time Plot of Discrete Signal

1

Figure 2: Amplitude vs. Frequency Plot of Discrete Signal

2.2 Short Time Fourier Transform

For our purposes, a single Fourier Transform of the input file does not provide enough information in order to construct
meaningfully compressed output. In the case of audio, different frequencies ought to be considered “important” at
different times over the duration of sound. For example, songs often begin with a heavy bassline, while the majority of
the song is probably at a higher frequency. Simply applying a DFT to the whole song would likely remove important
frequencies for entire sections.
The Short Time Fourier Transform (STFT) attempts to rectify this issue. Instead of applying a single DFT, we
apply multiple DFT’s over predefined time “windows.” Mathematically, this is expressed as:

Xk,w =

N−1∑
n=0

xnwn−ke
iwn (3)

Instead of producing a vector X as is done in Equation 2, the STFT produces a matrix X of amplitudes, valued over
some number of time windows. The input is composed of xn as before, but includes a vector of windows w informing
time intervals.
When implemented, the STFT computes the Discrete Fourier Transform of a collection of time windows within a
sound file. In our program, we used this to collect the frequency information of the file every 23 milliseconds. The
function also requires an overlap parameter to be set, ensuring that no data is lost as the file is broken up into small
intervals.

2.3 Spectrogram

Spectrograms are the visual representations of the matrix result of a STFT. By representing the matrix either as
a discrete surface or an image, we can visually represent an audio file, and eventually its compressed counterpart.
Figure 3 shows an example of the spectrogram, which includes the amplitude, frequency, and the time information
of the input audio:

2

Figure 3: Amplitude Spectrogram

3 Mel Scaling

The Mel Scale (short for “melody”) is a tool used to transform a regular Hertz-scaled data set into a form that has
more discernible differences between frequencies. The motivation is the fact that humans can better perceive low
frequencies than high frequencies. The scaling is accomplished by taking an elementwise log of the STFT matrix,
although the form of the scale varies. A general representation is below, with m as the mel-scaled frequency, a, b, c
as constants, and Xk,w as the (k,w)th component of the STFT matrix.

m = alogb(
Xk,w

c
+ 1) (4)

After mel scaling, the distance between low frequencies is increased while the distance between high frequencies is
decreased. This step is performed within our program in order to magnify “important frequencies” in the input file
by stretching the low frequency data and compressing the high frequency data. You can see this within Figure 4
below. Notice that high-frequency rows from Figure 3 are less represented, and that low-frequency rows have been
expanded.

Figure 4: Mel Spectrogram

3

4 Compression

To compress the audio data and amount of frequencies, our program performed a variation of Principal Component
Analysis. The importance of each frequency within its corresponding time window was calculated via a metric called
explained variance. The decompose function from the libROSA library intakes a parameter called n components,
which is based off of a percentage chosen by the user. The program keeps this percentage of the frequencies sorted
by importance and discards the rest. This portion of the frequencies is what builds the new compressed audio file.

Figure 5: Compressed Spectrogram

The figures seen above and below were generated with the parameter n components set to 40%. The noticeable visual
differences between the original amplitude spectrogram and the compressed spectrogram are a loss of “texture”,
smoother tops of waves (seen around the 8192 Hz tick mark in Figure 5), and filled dark space between 0 and
5 seconds. Intuitively, if n components was set to a higher number we would see less change between the two
spectrograms after compression, and if n components was lower we would see even more change occurring in the
data.

Figure 6: Amplitude vs. Time Plot of Compressed Audio

4

5 Analysis of Results

By utilizing the tools within the fields of spectral analysis and audio compression our program was able to successfully
modify an original sound file into a more condensed format. Through the manipulation of a compression parameter,
we were able to remove the less important frequencies present within the audio and returned a noticeably different
version. In the example of maintaining only 40% of the original frequencies, we saw less texturing in the middle
region of the original sound file. The compression also introduced unwanted static during the initial five seconds of
the sound file. We suspect this is related to the removal of waveforms that were cancelling other frequencies during
that time period.

Overall we feel as though we achieved the original goal of manipulating audio files by compressing the amount of
frequencies discovered via Fourier Transform techniques. Future work could involve exploring why we saw the first
five seconds of audio become populated with static after compression. Audio analysis is also a great jumping-off
point into image processing, which uses many of the tools described previously from spectral analysis. This project
helped each of us learn new skills regarding Fourier Transforms, file compression, and audio processing. By removing
frequencies, the enjoyment of good tunes was ruined with high pitched racket. On the contrary, the excitement we
had seeing math rip songs apart was glorious.

5

Appendix

List of Figures

1 Amplitude vs. Time Plot of Discrete Signal . 1
2 Amplitude vs. Frequency Plot of Discrete Signal . 2
3 Amplitude Spectrogram . 3
4 Mel Spectrogram . 3
5 Compressed Spectrogram . 4
6 Amplitude vs. Time Plot of Compressed Audio . 4

A Code

Load File and Plot Sound Signal

import librosa as lib
from librosa import display
import matplotlib.pyplot as plt
from IPython.display import Audio

load file
filename = "sound/louie.mp3"
samples, sampling_rate = lib.core.load(filename, duration=30, sr=None)

duration = len(samples)/sampling_rate
print(filename, "loaded; sampled at", sampling_rate, "Hz with a total length of", duration, "s.")

output amplitude vs. time
plt.figure()
lib.display.waveplot(y=samples, sr=sampling_rate)
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.show()

play sound (only runs in Jupyter classic)
Audio(filename)

Fourier Transform Performed

import numpy as np
import scipy as sp

use fft for frequencies, magnitudes
n = len(samples)
T = 1/sampling_rate
freqs = np.linspace(0.0, 1.0/(2.0*T), n//2) #possible frequency space
freq_mag = sp.fft.fft(samples) #magnitudes (occurrences) of frequencies (complex)
real_freq_mag = 2.0/n*np.abs(freq_mag[:n//2]) #take positive-frequency terms

output
plt.figure()
plt.plot(freqs,real_freq_mag)
plt.xlabel("Frequency (Hz)")
plt.ylabel("Magnitude")
plt.show()

Create Amplitude Spectrogram

do stft

window info
window_len_ms = 23
window_size = int(window_len_ms * sampling_rate * 0.001)
hop_len = int(window_size/4) #overlap, to be consistent between stft and specshow

compute amplitude spectrogram; convert to decibels
S = np.abs(lib.core.stft(samples, n_fft=window_size, hop_length=hop_len, window='hann'))
S_db = lib.amplitude_to_db(S, ref=np.max) #convert to db

output
lib.display.specshow(S_db, hop_length=hop_len, x_axis='time', y_axis='hz', sr=sampling_rate)
plt.colorbar(format='%+2.0f dB')
plt.title('Amplitude Spectrogram')

6

plt.xlabel('Time (s)')
plt.ylabel('Frequency (Hz)')
plt.tight_layout()
plt.show()

Create Mel Spectrogram

mel spectrogram
M = lib.feature.melspectrogram(samples, sr=sampling_rate, n_fft=window_size, hop_length=hop_len, window='hann')
M_db = lib.power_to_db(M, ref=np.max)

output
lib.display.specshow(M_db, x_axis='time', y_axis='mel', hop_length=hop_len, sr=sampling_rate)
plt.colorbar(format='%+2.0f dB')
plt.title('Mel-frequency spectrogram')
plt.xlabel('Time (s)')
plt.ylabel('Frequency (Mel)')
plt.tight_layout()
plt.show()

Create Compressed Mel Spectrogram

principal components (compression)
percent_comp = 0.4
n_comp = int(percent_comp*np.size(M,0))
print('Compressing file to', n_comp, 'samples out of', np.size(M,0))

comps, acts = lib.decompose.decompose(M, n_components=n_comp)
M_comp = comps.dot(acts)

M_comp_db = lib.power_to_db(M_comp, ref=np.max)

output
display.specshow(M_comp_db, x_axis='time', y_axis='mel', sr=sampling_rate, hop_length=hop_len)
plt.colorbar(format='%+2.0f dB')
plt.title('Compressed Mel-frequency spectrogram')
plt.xlabel('Time (s)')
plt.ylabel('Frequency (Mel)')
plt.tight_layout()
plt.show()

Create Compressed Sound Signal

file output
import soundfile as sf

S_comp = lib.feature.inverse.mel_to_stft(M_comp, sr=sampling_rate, n_fft=window_size)
y_comp = lib.griffinlim(S_comp)
sf.write('sound/pc40_louie30.wav', y_comp, sampling_rate)
sf.write('sound/louie30.wav', samples, sampling_rate)

compressed amplitude plot

plt.figure()
display.waveplot(y=y_comp, sr=sampling_rate)
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.show()

B Sources

Chaudhary, Kartik. “Understanding Audio Data, Fourier Transform, FFT, Spectrogram and Speech Recognition.”
Medium, Towards Data Science, 10 Mar. 2020, towardsdatascience.com/understanding-audio-data-fourier-transform-
fft-spectrogram-and-speech-recognition-a4072d228520.

Gartzman, Dalya. “Getting to Know the Mel Spectrogram.” Medium, Towards Data Science, 16 Jan. 2020,
towardsdatascience.com/getting-to-know-the-mel-spectrogram-31bca3e2d9d0.

LibROSA Python Library. https://librosa.github.io/librosa/.

7

	Introduction
	Fourier Transformation
	Background
	Short Time Fourier Transform
	Spectrogram

	Mel Scaling
	Compression
	Analysis of Results
	Appendix
	List of Figures
	Code
	Sources

