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Fig. 1. Visualization and dimensionality reduction for a planar robot system. (a) The four link swimmer resides in the plane, has three
shape modes, and position encoded with translation (x,y) and rotation θ . Figure originally published in [1]. (b) The constraint curvature
function (CCF) represents magnitude of displacement with respect to configuration α⃗. This field represents the magnitude of body
rotation θ at any point in the space. (c) By selecting a subdomain of the full shape space, we create a new, reduced shape space.
Optimization of the subdomain can preserve the majority of dynamics while reducing the complexity of the system.

Abstract— Visualization of robot behavior is essential; however, current methods are impractical for robots with more than three
degrees of freedom. In this work, we summarize and replicate methods for examining the gaits of three and four link swimmers
(with 2 and 3 degrees of freedom, respectively) by visualizing their constraint curvature functions. Additionally, we propose and
explore a method for selecting an optimal “slice” of the shape space to express and visualize robot dynamics, effectively reducing the
dimensionality of the system. We apply this method to two example systems, and discuss applications to higher dimensional systems.

Index Terms—Scalar field visualization, Dimensionality reduction.

1 INTRODUCTION

In the field of robotics, systems are designed to move with one or
several degrees of freedom. Each degree of freedom may be actuated,
or move passively; the dynamics of the system regulate the capabilities
of each degree of freedom. Commanded motions along each degree of
freedom displace the robot through the world. For kinematic systems
(like robot arms), displacements are predictable, and simple controllers
can be used; in contrast, dynamic systems require a deliberate control
strategy. Force feedback from either the environment or the robot itself
destroys the performance of basic controllers. A number of approaches
offer improved controllers, including those from the machine learning,
geometric mechanics, and optimization communities.

Despite the availability of alternative control strategies, modern robot
systems still often suffer from the “curse of dimensionality.” Robots
with many degrees of freedom, like the four link swimmer in Fig. 1,
inherently have a large space of control strategies. The search space
is often so large that algorithms are either incomplete or suboptimal,
resulting in dissatisfying control. Even if a control strategy is found,
it is difficult to explain intuitively, as high-dimensional dynamics are
challenging to visualize. If the space is reduced, then control can be
achieved with existing approaches, and current visualization techniques
may be used to explain the control approach.

In this paper, we take several steps to reduce the dimensionality of
robot shape spaces. We begin by appling existing scientific visualization
techniques to identify valuable regions of example shape spaces. These
techniques include gradient, contour, and critical point visualizations in
2D, as well as an isosurface visualization in 3D; examples are shown
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in Fig. 1(b-c). All visualizations take advantage of the constraint
curvature function (CCF) [3], a geometric-mechanical tool that encodes
important regions of the robot shape space. Visualizations of the CCF
are complemented by our own dimensionality reduction approach,
which uses a linear subdomain to capture valuable regions of the shape
space, as demonstrated in Fig. 1(c). By defining this subdomain, we
create a reduced set of robot shape modes over which we can plan
robot motion. Our lower-dimensional system maps bijectively to the
full shape space, so control policies still apply to the original system.
The linear subdomain is also much easier to visualize, lending intuition
about system behavior and potentially valuable control policies.

The remainder of this paper is organized as follows. In §2, we de-
scribe the details of the underlying geometric-mechanical model, as
well as the chosen visualization techniques. In §3, we define our dimen-
sionality reduction technique. In §4, we present CCF visualizations for
two example systems, as well as their reduced order models. In §5, we
discuss the limits of our method, and comment on future work.

2 BACKGROUND

Our dimensionality reduction technique depends on results from the
geometric mechanics community, as well as established scalar field
visualization techniques. Here, we describe the details behind both.

2.1 Geometric Mechanics

Geometric Mechanics refers to a body of research in which system
geometry is used to make conclusions about system mechanics. The
geometric mechanics community has established a framework and set
of tools for analyzing the behavior of dynamic systems; this framework
is the basis for work done in this paper.

We assert that robot systems have a shape space R and position space
G. The shape space contains all possible ways the system can deform



itself; shape modes [α1,α2, · · · ,αn]
T ∈ R refer to the independent de-

grees of freedom of the system. The position space encodes the possible
locations g ∈ G the robot can be in the world. For planar systems, the
special Euclidean group, G = SE(2), is a common choice of position
space that supports translation and rotation. Hence, g = [x,y,θ ]T .

Two structures are commonly used to map from shape to position
space. The local connection, A, is a linear map from shape velocities
to body (position) velocities 1 [2]:

ġb = A(r)ṙ. (1)

The local connection is often decomposed into a set of vector fields,
describing how velocity ṙ at a specific shape r results in x, y, or θ dis-
placement through the world. An alternative structure is the constraint
curvature function, or CCF, which accounts for local curvature of the
shape space with a local Lie bracket [3]:

CCF = dA+[A1,A2]. (2)

The constraint curvature function is a 2-form, and describes the vari-
ation in displacement from infinitesimal shape changes. By taking
the magnitude of the CCF, we produce a scalar field that estimates
“valuable” regions of the shape space; an example is shown in Fig. 6.
High-magnitude regions of this field encode effective collections of
shapes for displacement, and are strong regions for motion planning.

2.2 Scalar Field Visualization
Visualization of the CCF-norm allows us to identify high-value regions
of the shape space for motion planning. Visualization techniques also
have to scale with the dimensionality of the system; we ought to be
able to identify conserved structures for up to three shape variables. To
effectively visualize the CCF-norm of robot systems, we used color
gradient, contour, critical point, and isosurface visualizations.

In the 2D case, gradient, contour, and critical point visualizations
tell us about important features in the data. The gradient visualization,
when a colorbar is included, provides us intuition about the intermediate
regions of the CCF. In contrast, the contour visualization allows us to
draw conclusions about the geometry of the CCF, and where critical val-
ues (in particular, local maxima) may be found. Critical point detection
is also used to compute exactly the highest-value points in the shape
space. In this paper, we also combined these visualization techniques,
producing gradient-colored contours with rendered maxima.

In the 3D case, visualization is made more challenging because of
higher dimensionality and the possibility of occlusions in the field. We
chose an isosurface visualization, which can be thought of as the 3D
analog to contours. Levelsets in the 3D data are rendered as surfaces,
which are colored according to a scalar mapping. To minimize the
effect of occlusions, isosurfaces are also given transparency according
to their scalar value. This combined approach produces strong intuition
about the data and its present features.

3 METHOD

Our method selects a slice from the shape space such that it can be
visualized in two or three dimensions. First, we define a reduced-
dimension shape space as a linear subdomain of the full shape space.
Then, we optimize the orientation of the new shape space such that it
captures as much displacement as possible. Our approach is based on
the assumption that an intrinsic, lower dimensional subsystem exists
which preserves the most important aspects of the larger system; if this
isn’t the case, then we destroy valuable structures in the shape space
and reduce the capability of the system.

3.1 Linear Subdomain
For a shape space of dimension D (having D shape variables), we
reduce the dimension to D− 1 by taking a linear subdomain of the
shape space. For a 2D shape space, this subdomain is a line; for a 3D
shape space, it is a plane. The CCF can be projected onto this new

1In reality, ġb is on the Lie algebra of the position space G; in the context of
this paper, this is ◦g ∈ se(2). We have simplified its expression here.

domain, where we can search for control policies or visualize system
dynamics. Because this domain is embedded in the shape space, the
new shape modes are trivially mapped onto the full shape space, and
control policies are relevant to the original system.

The linear subdomain requires that we define the size, position, and
orientation of the new shape space within the full domain. In our
implementation, we chose to maintain the initial range of the shape
variables, and fix the position at the origin of the shape space. The
orientation of the new subdomain can then be used to select for valuable
regions of the shape space, based on some metric for performance. With
an optimization approach, we can pick an orientation that maximizes
system performance, producing an effective dimensionality reduction.

3.2 Optimization
Our method extracts the optimal subdomain orientation by maximizing
the integral of the field enclosed within the subdomain. The objective
function maximizes possible displacement within the reduced shape
space. In other words, we select the subdomain that satisfies the follow-
ing optimization problem:

max
RD−1

ˆ
RD−1

CCF(⃗α) dα1 ∧·· ·∧dαD

s.t. RD−1 ∈ RD,

(3)

where RD−1 is a subdomain of the robot’s original shape space RD.
Equation 3 presents a general form of the optimization problem;

however, optimizing over all possible subdomains is intractable. As we
only consider centered, linear subdomains inside the shape space, RD−1
can be parametrized in terms of the angle(s) θ⃗ of rotation inside of RD.
By parametrizing the subdomain with a vector of angles RD−1(⃗θ), the
optimization problem now becomes

max
θ⃗

ˆ
RD−1 (⃗θ)

CCF(⃗α) dα1 ∧·· ·∧dαD

s.t. θ⃗ ∈ R
D(D−1)

2 .

(4)

3.3 Implementation
In our implementation, we calculate the integral in Eqn. 4 using the
trapezoidal method, and find the optimal orientation by sampling uni-
formly across all possible rotations. To explore this in the two and three
dimensional cases, we sample from the full domain of angles to find the
combination which maximizes the objective function (i.e., integration
over the CCF), capturing as much system capability as possible.

By visualizing the result of this parameterization, we observed that
this optimization problem is nonconvex but locally smooth, as shown
for in Fig. 2. This form has implications for potential future optimiza-
tion approaches beyond uniform sampling. For instance, it suggests that
a gradient ascent method may be useful for finding the best subdomain,
but that such an approach is likely to get stuck in a local rather than
global maximum. It should also be noted that the objective function
may vary wildly for different types of robots; in other words, optimizer
hyperparameters may be robot-specific.

4 RESULTS AND VISUALIZATIONS

The dimensionality reduction approach defined in §3 was applied to
two example systems: the three link and four link swimmers. A di-
agram of the latter is available in Fig. 1(a); relevant visualizations
and interpretations follow. Further information about these (and other)
kinematic systems is available in [1–4].

4.1 Three Link Swimmer
The three link swimmer has 2 degrees of freedom, and its shape space
can be represented in the plane. The CCF for the swimmer is repre-
sented as a 2D scalar field over this domain.

We first apply a gradient visualization of this field with critical
points, as shown in Fig. 3. With this visualization, we can observe two
high-value regions of the shape space, in the top-right and bottom-left



Fig. 2. Change in the integrated CCF based on subdomain angle, for a
three link swimmer. Here, the subdomain is denoted as S. This figure
represents the objective function for selecting the optimal subdomain.
The nonconvex objective function makes optimization nontrivial.

Fig. 3. CCF for the rotation of the three link swimmer, rendered with a
gradient color map. Maxima are represented with black points. The two
maximal corner regions in the shape space are particularly effective for
rotation.

corners, respectively. Other, suboptimal regions also appear along the
edges of the space, which could be used for constrained locomotion.

We also apply a contour visualization of the field in Fig. 4, with
gradient coloring of the contours and a visualization of maxima. With
this approach, we observe the same structures present in the gradient
visualization, but can make stronger conclusions about the geometry
of the CCF. In addition, this visualization contains the chosen “slice”
for our optimized subdomain, which bisects the two high-value regions
of the shape space. The cross-section of this subdomain (and corre-
sponding reduction of the shape space) is available in Fig. 5; note the
corresponding range and conserved high-value geometry.

4.2 Four Link Swimmer

The four link swimmer has 3 degrees of freedom, and so its shape space
is represented as a volume. The CCF is a corresponding 3D scalar field
over the domain, requiring a more careful visualization method.

For the four link swimmer, we apply the isosurface visualization
discussed in §2; a projection of this visualization is available in Fig. 6.
Although the 2D projection of the 3D geometry into the page reduces
the effectiveness of the visualization, we can still identify important
structures. In the extrema of the domain, we observe two high-value
regions, analogous to those observed in the three link swimmer. Indeed,

Fig. 4. CCF for the rotation of the three link swimmer, rendered with
colored contours, and including critical points. An optimized subdo-
main is also shown, which captures as much area as possible in a
one-dimensional shape space.

many structures are conserved between the swimmers, including the
suboptimal extrema along the edges of the shape space.

In addition, the optimized subdomain was computed for the four link
swimmer. The “slice” plane is visible in Fig. 6, and the projection of
the CCF onto the plane is shown in Fig. 7. Here, the similarity between
the swimmers is reinforced; as before, we see two high-value regions of
the shape space. Given a relaxation of constraints on the subdomain (a
larger plane, for example), the two domains may be even more similar.

Both Fig. 6 and Fig. 7 are larger reprints of Fig. 1(b-c), and are
included for clarity and easier reading.

5 DISCUSSION

Our dimensionality reduction approach, combined with effective visu-
alization techniques, demonstrates interesting qualities of the example
systems. Interpretation is done here, as well as speculation about future
work and possible improvements to this approach.

5.1 Interpretation of Results
Immediately, the visualizations presented in this paper imply some
amount of conserved behavior for N-link swimmers. Not only are
similar structures present in the full shape spaces, but our basic dimen-
sionality reduction implies a correspondence between the three and
four link swimmers. At the moment, this claim is built only on intuition
lended by our visualization techniques; however, an improved method
of subdomain selection and optimization could allow for numeric vali-
dation through either field comparison or test gait execution.

This approach allows us to think of lower-dimensional systems as
“approximations” on their higher-dimensional counterparts. Higher
dimensional systems have the most shape modes available to them;
however, a reduced order system may still be able to mostly replicate
the same behavior. The extent that a simpler system is effective is
application-dependent, but certain robot domains may be able to sim-
plify existing designs or planning approaches, based on analysis and
results using this technique. Alternatively, the general behavior of
systems may be visualized in lower-dimensional space, but planning
could occur in the full shape space, taking advantage of all shape modes
while allowing the behavior to still be explained.

Future improvements on this method will either reinforce the fact that
similar systems have conserved dynamics, or will highlight emergent
artifacts of lowering the “shape resolution” of systems.



Fig. 5. Slice of the CCF for the rotation of the three link swimmer,
corresponding to the optimized subdomain. This new subdomain defines
a trival, one-dimensional shape space.

Fig. 6. CCF for the rotation of the four link swimmer, represented as
an isosurface. Two high-value regions are clear, in the bottom-left and
top-right corners of the shape space. An optimized choice of planar
subdomain is also shown, which defines a reduced shape space.

5.2 Future Work
This work is a first step towards effective dimensionality reduction and
visualization of robot system behavior. However, many simplifying
assumptions reduce the effectiveness of our method; future work will
remove these assumptions and improve results.

This work only addresses reduction of systems with up to three
shape modes; however, this approach would be most useful for systems
with at least four shape modes. The behavior of these high-dimensional
systems is difficult to visualize with existing techniques, but approxima-
tions of their behavior (through subdomain optimization) could make
complex systems more approachable. Extension to higher dimensions
requires a more robust mathematical formulation of the embedded
subdomain and associated optimization strategy.

The systems used in this paper do not have flat shape spaces, despite
the cartesian coordinates used throughout this paper to visualize system
dynamics. Independently actuated, rotational joints give the swimmers
toroidal shape spaces; this can be seen in the conserved structures
present in Fig. 4 and Fig. 6, cut off by the bounds of the visualization.
By failing to take this underlying topology into account, we potentially
miss interesting structures, and certainly fail to show all critical points.

Fig. 7. Slice of the CCF for the rotation of the four link swimmer, corre-
sponding to an optimized subdomain that defines a new, two-dimensional
shape space. Note that the subdomain is analogous to that of the three
link swimmer, which has equivalent dimensionality.

Future work ought to take into account the topology of the space to
reveal these structures and perform robust critical point detection.

In a similar vein, this work also does not account for the cost of
motion in the shape space. Previous work [1,4] defines cost metrics that
further deform the shape space according to physical actuator limits.
By incorporating the metric into this method, visualizations will better
reflect behavior that the system is physically capable of performing.

Finally, this work can be improved significantly with a broader
choice of subdomain, and an efficient optimization technique. The
linear subdomain produces a reasonable dimensionality reduction; how-
ever, we unrealistically constrain this domain, and there are likely
curved embeddings that more effectively describe system behavior,
which would require more intelligent optimization approaches to find.
As an example, the gradient of the field could be used to deform and
improve the subdomain over a set of iterations.
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A DIVISION OF TASKS

• Capprin Bass (domain expert): provided data for the project,
programmed 2- and 3-D visualizations, defined objective func-
tion and updated dimensionality reduction approach, and wrote
majority of paper (roughly 70%).

• Brett Stoddard (visualizationer): experimented with statistical di-
mensionality reduction - this was our original, planned approach,
but details of problem formulation rendered this impossible. With
change to dimensionality reduction algorithm, programmed sub-
domain optimizer, and wrote minority of paper (roughly 30%).

B CODE

All source code and data is available for download at:
https://github.com/Capprin/cs553-final.


